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Abstract. In this note we present examples of complex algebraic surfaces with canonical maps of degree 12,

13, 15, 16 and 18. They are constructed as quotients of a product of two curves of genus 10 and 19 using certain

non-free actions of the group S3 × Z2
3. To our knowledge there are no other examples in literature of surfaces

with canonical map of degree 13, 15 and 18.

1. Introduction

Beauville has shown in [B79] that if the image of the canonical map ΦKS of a surface has dimension 2, then its

degree d is bounded as follows:

d := deg(ΦKS ) ≤ 9 +
27− 9q

pg − 2
≤ 36.

Note that the bound d ≤ 36 was shown first by Persson in [Per78, Proposition 5.7]. Here, q is the irregularity

and pg the geometric genus of S. In particular, 28 ≤ d is only possible if q = 0 and pg = 3. Motivated by this

observation, the construction of surfaces with pg = 3 and canonical map of degree d for every value 2 ≤ d ≤ 36

is an interesting, but still widely open problem [MLP21, Question 5.2]. For a long time the only examples with

10 ≤ d were the surfaces of Persson [Per78], with canonical map of degree 16, and Tan [Tan03], with degree

12. In recent years, this problem attracted the attention of many authors, putting an increased effort in the

construction of new examples. As a result, we have now examples in literature for all degrees 2 ≤ d ≤ 12 and

d = 14, 16, 20, 24, 27, 32 and 36, see [MLP21],[Ri15, Ri17a, Ri17b, Ri22], [LY21], [GPR18], [N19, N21], [FG22]

and [N22].

In this paper we construct surfaces as quotients of a product of two curves C1 ×C2 modulo an action of the

group S3×Z2
3. Here C1 is a fixed curve of genus 10 while C2 is a curve of genus 19 varying in a one-dimensional

family. Varying the action of S3 × Z2
3 we get four different one-dimensional families of canonical models of

surfaces of general type with K2
S = 24, pg = 3 and q = 0.

We write the canonical system of each of them in terms of invariant holomorphic two-forms on the product

C1×C2. It turns out that for none of them |KS | is base-point free, i.e. the canonical map ΦKS : S 99K P2 is just

a rational map. To compute its degree, we resolve the indeterminacy by a sequence of blowups and compute

the degree of the resulting morphism via elementary intersection theory. It turns out that the degree of the

canonical map is not always constant in a family and in fact it assumes five different values: d = 12, 13, 15, 16

and 18. To our knowledge there are no other examples in literature of surfaces with canonical map of degree

13, 15 and 18. 1

We point out that our surfaces are examples of product-quotient surfaces, i.e. quotients of product of two

curves modulo an action of a finite group. In our cases the action is diagonal and non-free, arising surfaces

with 8 rational double points as singularities of type 1
2 (1, 1). Product-quotient surfaces are studied for the
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first time by Catanese in [Cat00]. They are revealed to being a very useful tool for building new examples of

algebraic surfaces and studying their geometry in an accessible way. Apart from other works, that mainly deal

with irregular surfaces, we want to mention the complete classification of surfaces isogenous to a product with

pg = q = 0 [BCG08] and the classification for pg = 1 and q = 0 under the assumption that the action is diagonal

[G15], and the rigid but not infinitesimally rigid manifolds [BP21] of Bauer and Pignatelli that gave a negative

answer to a question of Kodaira and Morrow [KM71, p.45].

Notation: An algebraic surface S is a canonical model if it has at most rational double points as singularities

and ample canonical divisor. Recall that each surface of general type is birational to a unique canonical model.

In particular the minimal resolution of the singularities of S is its minimal model.

Let us denote by σ and τ a rotation (3-cycle) and a reflection (transposition) of S3 respectively. Consider

also the three irreducible characters of S3, so the trivial character 1, the character sgn computing the sign

of a permutation, and the only 2-dimensional irreducible character µ := 1
2 (χreg − sgn− 1), where χreg is the

character of the regular representation of S3.

Let us fix a basis e1, e2 of Z2
3 and consider the dual characters ε1, ε2 of e1 and e2, i.e. the characters defined by

εi(ae1 + be2) := ζaδ1i+bδ2i3 , ζ3 := e
2πi
3 ,

where δij is the Kronecker delta.

Given a representation ρ on a vector space V and an isotypic component W of V of character χ, we can

sometimes write Wχ instead of W for specifying its character.

When we write n
√
λ we mean the first root of the complex number λ, i.e. if λ = |λ| · eiθ, then n

√
λ = n

√
|λ| · ei θn .

Finally, denote by [j] ∈ {0, 1} the class of the integer number j modulo 2.

2. The surfaces

In this section we construct a series of surfaces S, as quotients of a product of two curves C1 and C2, modulo

a suitable diagonal action of the group S3 × Z2
3. For any surface S, we determine the canonical map ΦKS and

compute its degree.

We consider the projective space P3 with homogeneous coordinates x0, . . . , x3 and the weighted projective

space P3(1, 1, 1, 2) with homogeneous coordinates y0, . . . , y3. Here y3 is the variable of weight 2. We take the

curves C1 ⊆ P3 and C2 ⊆ P3(1, 1, 1, 2) as follows

C1 :

x3
2 = x3

0 − x3
1

x3
3 = x3

0 + x3
1

, C2 :

y3
2 = y3

0 + y3
1

y3
3 = y6

0 + y6
1 − 2λy3

0y
3
1

, λ 6= −1, 1

Both curves are smooth, in fact this is the reason why we assume λ 6= −1, 1 in the definition of C2.

On the first curve C1 we consider the action of S3 × Z2
3 given by

φ1 : S3 × Z2
3 → Aut(C1),

(
σiτ j , (a, b)

)
7→ [(x0 : x1 : x2 : x3) 7→ (ζi3x[j] : x[j+1] : (−1)jζ2a+2i

3 x2 : ζ2b+2i
3 x3)].

We leave to the reader to checking that this defines an action.

Note that the automorphisms φ1(σiτ j , (a, b)) are precisely the deck transformations of the cover

π1 : C1
9:1−→ P1 6:1−→ P1, (x0 : x1 : x2 : x3) 7→ (x0 : x1) 7→

(
x3

0x
3
1 : (x6

0 + x6
1)/2

)
.

In particular C1/
(
S3 × Z2

3

)
' P1 and π1 is the quotient map. The cover is branched along p1 := (1 : 1),

p2 := (0 : 1) and p3 := (−1 : 1), corresponding to the three orbits of the points with non trivial stabilizer, of
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respective length 9, 18 and 9. A representative of each orbit and a generator of the stabilizer is given by:

p1 p2 p3

representative (1 : 1 : 0 : 3
√

2) (1 : 0 : 1 : 1) (1 : −ζ3 : 3
√

2 : 0)

generator g1 := (τ, (1, 0)) g2 := (σ2, (2, 2)) g3 := (στ, (0, 1))

On the second curve C2 the action φ2 is defined as

φ2 : S3 × Z2
3 → Aut(C2),

(
σiτ j , (a, b)

)
7→ [(y0 : y1 : y2 : y3) 7→ (ζi3y[j] : y[j+1] : ζa+2b+2i

3 y2 : ζ2a+2b+i
3 y3)].

As in the previous case, we leave to the reader to checking that this defines a group action and note that the

automorphisms φ2(σiτ j , (a, b)) are precisely the deck transformations of the cover

π2 : C2
9:1−→ P1 6:1−→ P1, (y0 : y1 : y2 : y3) 7→ (y0 : y1) 7→

(
y3

0y
3
1 : (y6

0 + y6
1)/2

)
.

Hence C2/
(
S3 × Z2

3

)
' P1 and π2 is the quotient map. The cover is branched along q1 := (1 : 1), q2 := (0 : 1),

q3 := (1 : λ) and q4 := (−1 : 1), corresponding to the four orbits of the points with non trivial stabilizer, of

respective length 27, 18, 18 and 9. Note that the points qj are pairwise distinct under the assumption λ 6= −1, 1.

A representative of each orbit and a generator of the stabilizer is given by:

q1 q2 q3 q4

representative (1 : ζ3 : 3
√
2 : 3
√
2− 2λ) (0 : 1 : 1 : 1) (1 :

3
√
λ−
√
λ2 − 1 :

3
√

1 + λ−
√
λ2 − 1 : 0) (1 : −1 : 0 : 3

√
2 + 2λ)

generator h1 := (στ, 0) h2 := (σ, (1, 0)) h3 := (Id, (1, 1)) h4 := (τ, (1, 2))

We compute the action of S3 × Z2
3 on H0(Ci,Ω

1
Ci

).

By standard adjunction theory H0(C1,Ω
1
C1

) is isomorphic to H0(C1,OC1(2)), isomorphism mapping a mono-

mial x2−α−β−γ
0 xα1x

β
2x

γ
3 to the 1-form ωαβγ that in affine coordinates is

ωαβγ := uαvβ−2tγ−2du, where u :=
x1

x0
v :=

x2

x0
and t :=

x3

x0
.

The character of the canonical representation of C1, the action of S3 × Z2
3 on H0(C1,Ω

1
C1

), can be computed

by the standard Chevalley-Weil formula and is amount to

χ1
can = ε21 · ε22 + sgn · ε1 · ε2 + sgn · ε2 + sgn · ε1 + µ · ε1 · ε2 + µ · ε21 · ε2 + µ · ε1 · ε22.

We give an explicit decomposition into irreducible subspaces. Using the expression in affine coordinates we

obtain

(σiτ j , (a, b)) · ωαβγ = φ1(
(
σiτ j , (a, b)

)−1
)∗(ωαβγ)

= (−1)j(β−1)ζ
a(β−2)+b(γ−2)+(α−(2α+β+γ−2)[j]+2β+2γ−7)i
3 ω(α−(2α+β+γ−2)[j])βγ .

A tedious but straightforward computation gives the following decomposition:

H0(C1,Ω
1
C1

) =〈ω011〉ε21·ε22 ⊕ 〈ω100〉sgn·ε1·ε2 ⊕ 〈ω020〉sgn·ε2 ⊕ 〈ω002〉sgn·ε1⊕

〈ω000, ω200〉µ·ε1·ε2 ⊕ 〈ω010, ω110〉µ·ε21·ε2 ⊕ 〈ω001, ω101〉µ·ε1·ε22 .

Similarly, adjunction theory gives an isomorphism amongH0(C2,Ω
1
C2

) andH0(C2,OC2
(4)) mapping a monomial

y4−α−β−2γ
0 yα1 y

β
2 y

γ
3 to the 1-form ω′αβγ that in affine coordinates is

ω′αβγ := (u′)α(v′)β−2(t′)γ−2du′, where u′ :=
y1

y0
v′ :=

y2

y0
and t′ :=

y3

y2
0

.

We obtain a basis of the 19 dimension space H0(C2,OC2
(4)) by taking the 22 monomials of degree 4 in the

variables yj and removing y0y
3
2 , y1y

3
2 and y4

2 , that can be expressed in terms of the other monomials using the

cubic equation defining C2. Accordingly we get a basis of H0(C2,Ω
1
C2

) by removing from that set ω′αβγ the
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1-forms ω′040, ω
′
030 and ω′130. The canonical character of C2 is given by Chevalley-Weil as

χ2
can = sgn ·ε21 ·ε2 +sgn ·ε21 ·ε22 +sgn ·ε1 ·ε2 +sgn ·ε1 +sgn ·ε22 +µ ·ε1 +µ ·ε2 +2µ ·ε22 +sgn ·ε21 +ε21 +µ ·ε21 +µ ·ε1 ·ε2,

and the action on H0(C2,Ω
1
C2

) computed in affine coordinates as above is

(σiτ j , (a, b)) · ω′αβγ = φ2(
(
σiτ j , (a, b)

)−1
)∗(ω′αβγ)

= (−1)jζ
a(2β+γ)+b(β+γ−4)+(α−(2α+β+2γ−4)[j]+2β+γ+1)i
3 ω′(α−(2α+β+2γ−4)[j])βγ .

Another tedious computation gives the decomposition

H0(C2,Ω
1
C2

) =〈ω′002〉sgn·ε21·ε2 ⊕ 〈ω
′
021〉sgn·ε21·ε22 ⊕ 〈ω

′
120〉sgn·ε1·ε2

⊕ 〈ω′101〉sgn·ε1 ⊕ 〈ω′200〉sgn·ε22 ⊕ 〈ω
′
001, ω

′
201〉µ·ε1 ⊕ 〈ω′011, ω

′
111〉µ·ε2

⊕ (〈ω′000, ω
′
400〉 ⊕ 〈ω′100, ω

′
300〉)µ·ε22 ⊕ 〈ω

′
010 + ω′310〉sgn·ε21 ⊕ 〈ω

′
010 − ω′310〉ε21

⊕ 〈ω′110, ω
′
210〉µ·ε21 ⊕ 〈ω

′
220, ω

′
020〉µ·ε1·ε2 .

We consider unmixed quotients S := (C1 ×C2)/
(
S3 × Z2

3

)
modulo a diagonal action φ1 × (φ2 ◦Ψ), where Ψ

is one of the automorphisms of S3 × Z2
3.

Firstly we study the singularities of S. We observe that C1 and C2 have stabilizers of order 6, 3 and 6 and 2, 3, 3

and 6 respectively. Hence 18 points of C1 and 36 points of C2 have stabilizer of even order. However S3 × Z2
3

has only three elements of order 2 and they are in the same conjugacy class. This means that each of these

three elements fix exactly 6 · 12 = 72 points of C1 × C2. Thus S can never be smooth and if it admits only

nodes, then they are in total 3 · 72/27 = 8.

Now let us consider the following automorphisms of S3 × Z2
3

(1)

Ψ1 = Id, Ψ2 =

σ 7→ σ

τ 7→ τσ
,

(
0 1

2 0

) ,

Ψ3 =

σ 7→ σ2

τ 7→ τ
,

(
0 2

1 0

) , Ψ4 =

σ 7→ σ2

τ 7→ τ
,

(
0 2

2 0

) .

A direct computation shows us that for these four choices of Ψ the surface S has exactly 8 nodes and no other

singularities.

Remark 2.1. The first example has been found by using the database [CGP22]. Later on we have run a

systematic search over all automorphisms of S3 × Z2
3 proving that the obtained surfaces having only nodes are

isomorphic to the four surfaces presented in this note.

The vector space H0(KS) is isomorphic to the invariant subspace
(
H0(Ω1

C1
) ⊗ H0(Ω1

C2
)
)S3×Z2

3 , where the

action on the tensor product is diagonal, i.e.
(
σiτ j , (a, b)

)
∈ S3 × Z2

3 acts via

(2) φ1(
(
σiτ j , (a, b)

)−1
)∗ ⊗ φ2(Ψ(

(
σiτ j , (a, b)

)−1
))∗.

For each character η of S3 × Z2
3 define its twist by Ψ as

ηΨ := η ◦Ψ−1.

Pulling back H0(KS) to C1 × C2 we obtain
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Lemma 2.2. A basis of H0(KS) is given by the
(
S3 × Z2

3

)
-invariant 2-forms of H0(Ω1

C1
) ⊗ H0(Ω1

C2
) with

respect to the action (2). Hence(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)S3×Z2

3 =
⊕
η 6=0

(
H0(Ω1

C1
)η ⊗H0(Ω1

C2
)ηΨ

)S3×Z2
3 ,

where H0(Ω1
Ci

)η is the isotypic component of H0(Ω1
Ci

) of character η. Moreover

pg = 〈χ1
can · χ2

can, 1〉 =
∑
η 6=0

〈χ1
can, η〉 · 〈χ2

can, ηΨ〉.

Denote by ωjklmrs := ωjkl ⊗ ω′mrs. We can now state and prove our main result:

Theorem 2.3. For all Ψ ∈ Aut(S3×Z2
3) in (1), the diagonal action φ1× (φ2 ◦Ψ) of S3×Z2

3 on the product of

the two curves C1 and C2 is not free. The quotient is a canonical model of a regular surface S of general type

with K2
S = 24, pg = 3 and with 8 rational double points as singularities of type 1

2 (1, 1). A basis of H0(KS), the

canonical map ΦKS in projective coordinates and its degree are stated in the table:

No Ψ Basis of H0(KS) ΦKS (x, y) deg(ΦKS )

1. Id {ω100021, ω020200, ω002040} (x0x1y22y3 : x22y
2
0y

2
1 : x23y

4
2) 18

2. Ψ2 {ω020101, ω002200, ζ3ω010020 − ω110220} (x22y0y1y3 : x23y
2
0y

2
1 : x2y22(ζ3x0y20 − x1y21))

15 if λ 6= 0

13 if λ = 0

3. Ψ3 {ω100002, ω020040, ω001220 + ω101020} (x0x1y23 : x22y
4
2 : x3y22(x0y21 + x1y20))

18 if λ 6= 0

16 if λ = 0

4. Ψ4 {ω100120, ω020101, ω000020 + ω200220} (x0x1y0y1y22 : x22y0y1y3 : y22(x20y
2
0 + x21y

2
1)) 12

Proof. We have already mentioned that for all Ψ in (1) the action is not free and the quotient S has 8 singularities

of type 1
2 (1, 1) and no other singularities. The genus of the two curves is g(Ci) ≥ 2, hence C1 × C2 has ample

canonical divisor and so S has ample canonical divisor too. It follows that S is a canonical model.

The self-intersection of the canonical divisor of each S is amount to

K2
S =

8(g(C1)− 1)(g(C2)− 1)

|S3 × Z2
3|

= 24.

They are regular surfaces, because they do not possess any non-zero holomorphic one-forms, since Ci/
(
S3 × Z2

3

)
is biholomorphic to P1. The geometric genus of each S is therefore equal to (compare [BP12])

pg = χ(OS)− 1 =
(g(C1)− 1)(g(C2)− 1)

|S3 × Z2
3|

+
1

12

(
8 · 3

2

)
− 1 = 3.

Using Lemma 2.2 we have computed a basis of H0(KS). In fact since we have proved that pg = 3 it is enough

to verify that the given elements of the table are invariant for the corresponding action. Applying the explicit

isomorphisms from H0(C1,Ω
1
C1

) to H0(C1,OC1
(2)) and from H0(C2,Ω

1
C2

) to H0(C2,OC2
(4)) we obtain the

product of quadrics and quartics defining the canonical map in the table.

It remains to determine the degree of ΦKS for each surface S. Instead to work on S it is convenient to work

on C1 × C2, which is smooth:

C1 × C2

λ12
//

ΦKC1×C2 &&

S
ΦKS

// P2
;;

P10·19−1.

Note that the map ΦKS ◦λ12 is induced by the sublinear system |T | of |KC1×C2 | generated by the three invariant

2-forms defining ΦKS . In particular the self-intersection of T is amount to

T 2 = (λ∗12KS)
2

= |S3 × Z2
3| ·K2

S = 54 · 24.
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We resolve the indeterminacy of ΦT = ΦKS ◦ λ12 by a sequence of blowups, as explained in the textbook [B96,

Theorem II.7]:

̂C1 × C2
//

Φ
M̂ %%

C1 × C2

ΦT
��

P2.

Here the morphism Φ
M̂

is induced by the base-point free linear system |M̂ | obtained as follows:

We blow up the base-points of |T |, take the pullback of the mobile part |M | of |T | and remove the fixed part of

this new linear system. We repeat the procedure, until we obtain a base-point free linear system |M̂ |.
The self-intersection M̂2 is positive if and only if Φ

M̂
is not composed with a pencil. In this case Φ

M̂
is onto

and it holds:

deg(ΦKS ) =
1

|S3 × Z2
3|

deg(Φ
M̂

) =
1

54
M̂2.

For the computation of the resolution, it is convenient to write the divisors of the product of quadrics and

quartics defining ΦKS (and hence ΦT ) as linear combinations of the curves Fj := {xj = 0} and Gk := {yk = 0}
on C1 × C2. We point out that these curves are reduced and intersect pairwise transversally thanks to the

assumption λ 6= −1, 1. In particular (Fj , Fk) = (Gj , Gk) = 0 and (Fj , Gk) = 81, for k 6= 3, while (Fj , G3) = 162.

Consider the first surface in the table. Here, the divisors of the three products of quadrics and quartics spanning

the subsystem |T | are:

F0 + F1 + 2G2 +G3, 2F2 + 2G0 + 2G1 and 2F3 + 4G2.

Here |T | has not fixed part and it has precisely 81 (non reduced) base-points F2 ∩ G2. We can perform the

computation of the difference T 2 − M̂2 by applying Lemma 2.4 below (for a proof see [FG22, Lemma 2.3])

recursively for each base-point of |T |:

Lemma 2.4. Let |M | be a two-dimensional linear system on a surface S spanned by D1, D2 and D3. Assume

that |M | has only isolated base-points, smooth for S, and that in a neighborhood of a basepoint p we can write

the divisors Di as

D1 = aH, D2 = bK and D3 = cH + dK.

Here H and K are reduced, smooth and intersect transversally at p and a, b, c, d are non-negative integers, b ≤ a.

Assume that

• d ≥ b or

• b 6= 0 and c+md ≥ a, where a = mb+ q with 0 ≤ q < b.

Then after blowing up at most (ab)-times we obtain a new linear system |M̂ | such that no infinitely near point

of p is a base-point of |M̂ |. Moreover M̂2 = M2 − ab.

In a neighbourhood of each of these base-points the three divisors are respectively

2G2, 2F2 and 4G2.

Since F2 and G2 are transversal we are in the situation of the Lemma 2.4 with H = G2 and K = F2, a = b = 2

and c = 4, d = 0. So b 6= 0 and c+md ≥ a and Lemma 2.4 applies. The correction term is ab = 4 for each of

the 81 base-points. Thus

T 2 − M̂2 = 4 · 81.

The degree of the canonical map is therefore given by

deg(ΦKS ) =
1

54
M̂2 =

1

54

(
T 2 − (T 2 − M̂2)

)
=

1

54
(54 · 24− 4 · 81) = 18.
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Now we take in exam the second surface in our table. Here the subsystem |T | is spanned by:

D1 := 2F2 +G0 +G1 +G3, D2 := 2F3 + 2G0 + 2G1 and D3 := F2 + 2G2 + ∆,

where ∆ = (ζ3x0y
2
0 − x1y

2
1). The (set-theoretical) base locus is

F2 ∩G0, F2 ∩G1, ∆ ∩G0,∆ ∩G1, and ∆ ∩ F3 ∩G3.

We remark that the other pieces of the base locus are empty. In fact those points would belong to some Fi ∩Fj
or Gi ∩Gj and we have already mentioned that they are pairwise disjoint.

We determine the correction term to the self intersection number for each of these base-points of |T |.
We consider first the 81 points F2 ∩Gi, for i = 0, 1. Here F2 and Gi intersect transversally at each of them.

Around one of these points, the divisors Dk are given by Gi + 2F2, 2Gi and F2. We are in the situation of the

Lemma 2.4 with H = Gi and K = F2, a = d = 2 and b = c = 1. Hence d ≥ b and Lemma 2.4 applies, which

yields ab = 2 as correction term.

We consider now the 81 base-points ∆∩Gi. The local coordinates around one of these points are X := xj/xi

and Y := yi/yj , where j = 0, 1, j 6= i. So the divisors Dk are respectively given by

{Y = 0}, 2{Y = 0} and {ζ1+i
3 Y 2 −X = 0}.

Thus D1 and D3 intersect transversally in (0, 0) and we fall down once more in the situation of the Lemma

2.4. Here H = D3 and K = D1, a = b = 1, c = 0 and d = 2. Since d ≥ b then Lemma 2.4 is fulfilled and the

correction term is amount to ab = 1.

We consider finally the points ∆ ∩ F3 ∩G3. These points satisfy the equations

(3)


y3

3 = y6
0 + y6

1 − 2λy3
0y

3
1 = 0

x2
3 = x3

0 + x3
1 = 0

ζ3x0y
2
0 − x1y

2
1 = 0

.

The last two equations imply that x3
1 = −x3

0 and

x3
0y

6
0 = (ζ3x0y

2
0)3 = (x1y

2
1)3 = x3

1y
6
1 = −x3

0y
6
1 .

Thus y6
0 + y6

1 = 0 and comparing it with the first equation of 3 we get λy3
0y

3
1 = 0. Therefore ∆∩F3 ∩G3 is non

empty only if λ = 0.

Let us suppose λ 6= 0. Then

T 2 − M̂2 = 2 · 2 · 81 + 2 · 81 = 6 · 81,

and the degree of the canonical map is amount to

deg(ΦKS ) =
1

54

(
T 2 − (T 2 − M̂2)

)
=

1

54
(54 · 24− 6 · 81) = 15.

It remains to consider the case when λ = 0. The base-points ∆ ∩ F3 ∩G3 are the following 54 ones:

tk :=
((

1 : −ζk1
3 :

3
√

2ζk2
3 : 0

)
,
(

1 : e
πi
6 ζk3

6 :
6
√

2e
πi
12 (1−2[k3])ζk4

3 : 0
))

, k1 + k3 ≡ 2 mod 3,

where ki = 0, 1, 2, for i 6= 3, and k3 = 0, . . . , 5. Fix coordinates X := x1/x0 + ζ2
3 and Y := y1/y0 − e

πi
6 around

one of these points, for example that one for k = (2, 0, 0, 0). The divisors Dk are locally given by

{Y = 0}, 2{X = 0} and {Y (2e
πi5
6 + Y − 2e

πi5
6 X −XY ) = 0} = {Y = 0}.

In this case H = {X = 0} and K = {Y = 0} and a = 2 and b = d = 1, c = 0. The correction term is ab = 2.

Hence

T 2 − M̂2 = 2 · 2 · 81 + 2 · 81 + 2 · 54 = 6 · 81 + 2 · 54.
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The degree of the canonical map is therefore given by

deg(ΦKS ) =
1

54

(
T 2 − (T 2 − M̂2)

)
=

1

54
(54 · 24− 6 · 81− 2 · 54) = 13.

We leave to the reader to verifying with the same approach that the degree of the canonical map of the remain

two surfaces are amount to that ones stated in the table. �
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